Ulster University Logo

Ulster Institutional Repository

Investigation into the pragmatism of phenomenological spiking neurons for hardware implementation on FPGAs

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Johnston, S, Prasad, G, Maguire, LP, McGinnity, TM and Belatreche, A (2004) Investigation into the pragmatism of phenomenological spiking neurons for hardware implementation on FPGAs. In: IEEE SMC UK-RI chapter Conference, Derry. IEEE SMC UK-RI chapter. 6 pp. [Conference contribution]

[img]PDF - Published Version
Indefinitely restricted to Repository staff only.

109Kb

Abstract

Spiking neurons (SNs) are biologicallyplausible neuron models that offer new informationprocessing paradigms for neuroengineers. It is expectedthat artificial representation of these neurons willenhance the link between biological and artificialsystems. The complexity of spiking neuron models withlow level abstraction makes them unsuitable for largescale implementations, limiting network scalability. Thishas led to the development of simpler, phenomenologicalspike models, such as the Leaky Integrate and Fire model.However, no clear guidelines exist to help select whichphenomenological model to implement. The aim of thispaper is to reduce this ambiguity, through a systematiccomparative performance evaluation. An evolutionarystrategy for the supervised training of networks to twoformal models is used to solve computational benchmarkproblems in software. The models are then designed,simulated and implemented onto a Field ProgrammableGate Array (FPGA) through a novel hardware designflow. It is envisaged that this information will helpneuroengineers in future hardware implementationdecisions.

Item Type:Conference contribution (Paper)
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Intelligent Systems
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Intelligent Systems Research Centre
ID Code:8221
Deposited By:Professor Girijesh Prasad
Deposited On:16 May 2011 11:30
Last Modified:20 May 2011 15:39

Repository Staff Only: item control page