Ulster University Logo

Ulster Institutional Repository

Optimal electrocardiographic lead systems: Practical scenarios in smart clothing and wearable health systems

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Finlay, D, Nugent, CD, Donnelly, Mark, McCullagh, PJ and Black, ND (2008) Optimal electrocardiographic lead systems: Practical scenarios in smart clothing and wearable health systems. IEEE Transactions on Information Technology in Biomedicine, 12 (4). pp. 433-441. [Journal article]

Full text not available from this repository.

DOI: 10.1109/TITB.2007.896882

Abstract

Advances in wearable health systems, from a smart textile, signal processing and wireless communications perspective have resulted in the recent deployment of such systems in real clinical and healthcare settings. Nevertheless, the problem of identifying the most appropriate sites from which biological parameters can be recorded still remains unsolved. This study aims to asses the effects of various practical constraints that may be encountered when choosing electrocardiographic recording sites for wearable health systems falling within the category of smart shirts for cardiac monitoring and analysis. We apply a lead selection algorithm to a set of 192 lead body surface potential maps (BSPM) and simulate a number of practical constraints by only allowing selection of recording sites from specific regions available in the 192 lead array. Of the various scenarios that were investigated, we achieved the best results when the selection process to identify the recording sites was constrained to an area around the precordial region. The top 10 recording sites chosen in this region exhibited an RMS voltage error of 25.8μV when they were used to estimate total ECG information. The poorest performing scenario was that which constrained the selection to two vertical strips on the posterior surface. The top 10 recording sites chosen in this scenario exhibited an RMS voltage error of 41.1μV. In general, it was observed that out of all the scenarios investigated, those which constrained available regions to the posterior and lateral surfaces performed less favorably than those where electrodes could also be chosen on the anterior surface. The overall results from our approach have validated the proposed algorithm and its ability to select optimal recording sites taking into consideration the practical constraints which may exist with smart shirts.

Item Type:Journal article
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Mathematics
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Smart Environments
ID Code:7022
Deposited By:Professor Christopher Nugent
Deposited On:28 Jan 2010 09:14
Last Modified:22 Jul 2011 11:42

Repository Staff Only: item control page