Ulster University Logo

Ulster Institutional Repository

Integration of microarray data for a comparative study of classifiers and identification of marker genes

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Berrar, Daniel, Sturgeon, B, Bradbury, I, Downes, Stephen and Dubitzky, Werner (2005) Integration of microarray data for a comparative study of classifiers and identification of marker genes. In: METHODS OF MICROARRAY DATA ANALYSIS IV, Durham, NC. UNSPECIFIED. 386 pp. [Conference contribution]

Full text not available from this repository.

Abstract

Novel diagnostic tools promise the development of patient- tailored cancer treatment. However, one major step towards individualized therapy is to use a combination of various data sources, e.g. transcriptomic, proteomic, and clinical data. We have integrated clinical data and lung cancer microarray data that were generated on two different oligonucleotide platforms. We were interested in the question whether the prediction of survival outcome benefits from the integration of clinical and transcriptomic data. In addition, we attempted to identify those genes whose expression profiles correlate with survival outcome. We applied five machine learning techniques to predict survival risk groups, and we compared the models with respect to their performance and general user acceptance. Based on quantitative and qualitative evaluation criteria, we chose decision trees as the most relevant technique for this type of analysis. Our in silico analysis corroborates the role of numerous marker genes already described in lung adenocarcinomas. In addition, our study reveals a set of highly interesting genes whose expression profiles correlate with genetic risk groups of unexpected survival outcomes.

Item Type:Conference contribution (Lecture)
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > School of Biomedical Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Molecular Medicine
Biomedical Sciences Research Institute > Molecular Medicine > Nano Systems Biology
ID Code:3385
Deposited By:Professor Stephen Downes
Deposited On:15 Dec 2009 11:46
Last Modified:11 Aug 2010 16:57

Repository Staff Only: item control page