Ulster University Logo

Ulster Institutional Repository

Changes in human short-wavelength-sensitive and achromatic resolution acuity with retinal eccentricity and meridian

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Beirne, Raymond, Vidinova, Margarita and Anderson, Roger (2005) Changes in human short-wavelength-sensitive and achromatic resolution acuity with retinal eccentricity and meridian. VISUAL NEUROSCIENCE, 22 (1). pp. 79-86. [Journal article]

Full text not available from this repository.

DOI: 10.1017/S0952523805221119

Abstract

Psychophysical measurements using achromatic grating resolution acuity in peripheral vision show a prominent retinal asymmetry in acuity which is consistent with predicted values based on available estimates of midget ganglion cell density. Recent studies have shown that peripheral grating resolution acuity values for short-wavelength- sensitive (SWS) isolating gratings in normal observers are closely related to predicted values based on the underlying small bistratified ganglion cell density. By measuring SWS resolution acuity at different locations across the visual field, we wished to see if any significant acuity asymmetry exists for the short-wavelength system. In addition to this, we wanted to compare SWS and achromatic resolution acuity at different retinal locations of equal eccentricity. SWS and achromatic grating resolution acuity was measured in two observers at a number of different retinal meridians of 10- and 25-deg eccentricity from the fovea, and out to 35-deg eccentricity along the horizontal meridian. Achromatic resolution acuity was higher than SWS resolution acuity at all locations. At 10-deg eccentricity there was slight radial asymmetry in SWS and achromatic acuity, both displaying highest acuity along the horizontal meridian. At 25-deg eccentricity, SWS and achromatic acuity showed significant asymmetry with acuity being higher in the nasal retina compared to the temporal retina and with higher acuity in the superior retina compared to the inferior retina. At 35-deg eccentricity, the acuity asymmetry along the horizontal meridian was maintained with acuity for both significantly higher in the nasal retina. The SWS acuity changes with eccentricity and meridian were qualitatively similar to that found for achromatic acuity at the majority of retinal locations. Like achromatic acuity, SWS acuity shows significant asymmetry at different retinal locations of equal eccentricity. This suggests that both the midget and small bistratified ganglion cell population density changes significantly with retinal location and eccentricity. SWS acuity appears to change in parallel with achromatic acuity for the majority of retinal locations measured, although the amount of nasotemporal asymmetry appears to be slightly less for the SWS system at 25- and 35-deg eccentricity.

Item Type:Journal article
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > School of Biomedical Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Vision
ID Code:2313
Deposited By:Dr Raymond Beirne
Deposited On:30 Nov 2009 09:41
Last Modified:04 Aug 2011 09:41

Repository Staff Only: item control page