Ulster University Logo

Ulster Institutional Repository

Conformational, receptor interaction and alanine scan studies of glucose-dependent insulinotropic polypeptide.

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Venneti, KC, Malthouse, JP, O'Harte, Finbarr and Hewage, CM (2011) Conformational, receptor interaction and alanine scan studies of glucose-dependent insulinotropic polypeptide. Biochim Biophys Acta. , 1814 (7). pp. 882-888. [Journal article]

Full text not available from this repository.


Glucose-dependent insulinotropic polypeptide (GIP) is an insulinotropic incretin hormone that stimulates insulin secretion during a meal. GIP has glucose lowering abilities and hence is considered as a potential target molecule for type 2 diabetes therapy. In this article, we present the solution structure of GIP in membrane-mimicking environments by proton NMR spectroscopy and molecular modelling. GIP adopts an α-helical conformation between residues Phe(6)-Gly(31) and Ala(13)-Gln(29) for micellar and bicellar media, respectively. Previously we examined the effect of N-terminal Ala substitution in GIP, but here eight GIP analogues were synthesised by replacing individual residues within the central 8-18 region with alanine. These studies showed relatively minor changes in biological activity as assessed by insulin releasing potency. However, at higher concentration, GIP(Ala(16)), and GIP(Ala(18)) showed insulin secreting activity higher than the native GIP (P<0.01 to P<0.001) in cultured pancreatic BRIN-BD11 cells. Receptor interaction studies of the native GIP with the extracellular domain of its receptor were performed by using two different docking algorithms. At the optimised docking conformation, the complex was stabilised by the presence of hydrophobic interactions and intermolecular hydrogen bonding. Further, we have identified some potentially important additional C-terminal interactions of GIP with its N-terminal extracellular receptor domain.

Item Type:Journal article
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > School of Biomedical Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Diabetes
ID Code:20741
Deposited By:Dr Nigel Irwin
Deposited On:10 Jan 2012 14:42
Last Modified:10 Jan 2012 14:42

Repository Staff Only: item control page