Ulster University Logo

Ulster Institutional Repository

Segmental sequencing of kinetic energy in a computer-simulated golf swing

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Kenny, Ian C., McCloy, Alex J., Wallace, Eric S. and Otto, Steve R. (2008) Segmental sequencing of kinetic energy in a computer-simulated golf swing. Sports Engineering, 11 (1). pp. 37-45. [Journal article]

[img]PDF - Published Version
Indefinitely restricted to Repository staff only.

408Kb

URL: http://www.springerlink.com/content/1369-7072/11/1/

DOI: 10.1007/s12283-008-0005-0

Abstract

The concept of the transfer of kinetic energy (KE) sequentially through the human body from proximal to distal segments is an influential concept in biomechanics literature. The present study develops this area of research through investigation of segmental sequencing of the transfer of KE by means of computer simulation. Using a musculoskeletal computer model previously developed by the authors, driven using three-dimensional kinematic data from a single elite male golfer, combined inverse and forward dynamics analyses enabled derivation of KE. Rigid body segments of torso, hips, arms and clubhead were examined in line with previous literature. Using this method a driver swing was compared to a 7 iron swing.Findings showed a high level of correlation between driver and iron peak KE and timing of peak KE relative to impact. This seems to indicate equivalent trunk and arms linear velocity, thus force applied, for an iron shot and a driver shot. There were highly significant differences between KE output for body segments for both clubs. In addition, peak KE magnitudes increased sequentially from proximal todistal segments during swing simulations for both the driver and 7 iron. This supports the principle of the summation of speed. However, timing of peak KE was not sequential from proximal to distal segments, nor did segments peak simultaneously. Rather, arms peaked first, followed by hips, torso and club. This seems to indicate a subjective optimal coordination of sequencing.

Item Type:Journal article
Keywords:Computer simulation Golf Kinetic energy Segmental sequencing
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > Ulster Sports Academy
Research Institutes and Groups:Sport and Exercise Sciences Research Institute
Sport and Exercise Sciences Research Institute > Centre for Sports Science and Sports Medicine
ID Code:20697
Deposited By:Professor Eric Wallace
Deposited On:09 Jan 2012 15:34
Last Modified:09 Jan 2012 15:34

Repository Staff Only: item control page