Ulster University Logo

Ulster Institutional Repository

Autonomic Supervision of Stigmergic Self-Organisation for Distributed Information Retrieval

Biomedical Sciences Research Institute Computer Science Research Institute Environmental Sciences Research Institute Nanotechnology & Advanced Materials Research Institute

Greer, K, Baumgarten, Matthias, Mulvenna, Maurice, Nugent, Christopher and Curran, Kevin (2007) Autonomic Supervision of Stigmergic Self-Organisation for Distributed Information Retrieval. In: Proceedings of Workshop on Technologies for Situated and Autonomic Communications (SAC) at IEEE 2nd International Conference on Bio inspired Models of Network, Information and Computing Systems (BIONETICS-2007). BIONETICS, pp. 264-269. ISBN 978-963-9799-05-9 [Book section]

[img]
Preview
PDF
173Kb

DOI: 10.1109/ BIMNICS.2007.4610124

Abstract

This paper will consider how a network of information sources might be autonomously monitored to allow it to self- optimise with respect to querying. While future networks will need to be able to self-adapt, the dynamic and autonomous nature of such networks will make the supervision process more difficult to implement in programming terms. Stigmergic linking is a lightweight and flexible way to provide some form of optimisation. If evaluation functions can also measure the success of any query, then it may be possible to monitor the performance of the self-optimisation. A supervision system could adjust the link update method until an acceptable balance between search time and quality of service is reached. Thus at least in this respect, autonomic supervision would be possible. The monitoring system might also monitor ‘concept drift’ and detect when it occurs. This measures typical boundaries for concepts of interest and detects when these boundaries are violated. When concept drift occurs, the system would be able to tell if this resulted from a fault or simply a change in the system use and thus be able to apply the appropriate solution.

Item Type:Book section
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Mathematics
ID Code:11244
Deposited By:Professor Maurice Mulvenna
Deposited On:23 Mar 2010 16:56
Last Modified:23 Mar 2010 16:56

Repository Staff Only: item control page